Skip to main content

Launch GPT DeepSpeed Models using Determined AI

Launch a GPT DeepSpeed model using Determined AI on CoreWeave Cloud

DeepSpeed is an open-source deep learning library for PyTorch optimized for low latency and high throughput training, designed to reduce compute power and memory required to train large distributed models.

In the example below, a minimal GPT-NeoX DeepSpeed distributed training job is launched without the additional features such as tracking, metrics, and visualization that Determined AI offers.

Tutorial source code

To follow along with this example, first clone the CoreWeave GPT DeepSpeed repository to your workstation:

Example
$
git clone --recurse-submodules https://github.com/coreweave/gpt-det-deepseed.git

Prerequisites

This guide assumes that the following are completed in advance.

Setup

The launcher configuration file

The launcher.yml configuration file provided in this demo exposes the overall configuration parameters for the experiment**.**

Note

Determined AI uses its own fork of DeepSpeed, so using that image is recommended.

Example
image:
gpu: liamdetermined/gpt-neox

In this example, a wrapper around DeepSpeed called determined.launch.deepspeed allows for safe handling of note failure and shutdown.

Example
entrypoint:
- python3
- -m
- determined.launch.deepspeed

Mount path for host file

In train_deepspeed_launcher.py , the default mount path is defined as:

Example
shared_hostfile = "/mnt/finetune-gpt-neox/hostfile.txt"

Configure this hostfile path to your mount path.

Dockerfile

The Dockerfile provided in this experiment is used to build the Docker image needed to run the experiment in the cluster. The image may be manually built if customizations are desired.

The Dockerfile uses the following:

  • Python 3.8
  • PyTorch 1.12.1
  • CUDA 11.6
Click to expand - Example Dockerfile
Example
FROM coreweave/nccl-tests:2022-09-28_16-34-19.392_EDT
ENV DET_PYTHON_EXECUTABLE="/usr/bin/python3.8"
ENV DET_SKIP_PIP_INSTALL="SKIP"
# Run updates and install packages for build
RUN echo "Dpkg::Options { "--force-confdef"; "--force-confnew"; };" > /etc/apt/apt.conf.d/local
RUN apt-get -qq update && \
apt-get -qq install -y --no-install-recommends software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa -y && \
add-apt-repository universe && \
apt-get -qq update && \
DEBIAN_FRONTEND=noninteractive apt-get install -y curl tzdata build-essential daemontools && \
apt-get install -y --no-install-recommends \
python3.8 \
python3.8-distutils \
python3.8-dev \
python3.8-venv \
git && \
apt-get clean
# python3.8 -m ensurepip --default-pip && \
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python3.8 get-pip.py
RUN python3.8 -m pip install --no-cache-dir --upgrade pip
ARG PYTORCH_VERSION=1.12.1
ARG TORCHVISION_VERSION=0.13.1
ARG TORCHAUDIO_VERSION=0.12.1
ARG TORCH_CUDA=116
ARG TORCH_INDEX=whl
RUN python3.8 -m pip install --no-cache-dir install torch==${PYTORCH_VERSION}+cu${TORCH_CUDA} \
torchvision==${TORCHVISION_VERSION}+cu${TORCH_CUDA} \
torchaudio==${TORCHAUDIO_VERSION}+cu${TORCH_CUDA} \
--extra-index-url https://download.pytorch.org/${TORCH_INDEX}/cu${TORCH_CUDA}
RUN python3.8 -m pip install --no-cache-dir install packaging
RUN mkdir -p /tmp/build && \
cd /tmp/build && \
git clone https://github.com/NVIDIA/apex && \
cd apex && \
python3.8 -m pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ && \
cd /tmp && \
rm -r /tmp/build
#### Python packages
RUN python3.8 -m pip install --no-cache-dir determined==0.19.2
COPY requirements/requirements.txt .
RUN python3.8 -m pip install --no-cache-dir -r requirements.txt
COPY requirements/requirements-onebitadam.txt .
RUN python3.8 -m pip install --no-cache-dir -r requirements-onebitadam.txt
COPY requirements/requirements-sparseattention.txt .
RUN python3.8 -m pip install -r requirements-sparseattention.txt
RUN python3.8 -m pip install --no-cache-dir pybind11
RUN python3.8 -m pip install --no-cache-dir protobuf==3.19.4
RUN update-alternatives --install /usr/bin/python3 python /usr/bin/python3.8 2
RUN echo 2 | update-alternatives --config python

Launch the experiment

To run the experiment, invoke det experiment create from the root of the cloned repository.

Example
$
det experiment create core_api.yml .

Logging

You can track logs for this experiment using the Determined AI web UI, and visualize metrics using Weights & Biases (WandB). To use WandB, pass your WandB API key to an environment variable called WANDB_API_KEY, or modify the function get_wandb_api_key() in deepy.py to return your API Token.

Important

To configure your DeepSpeed experiment to run on multiple nodes, change the slots_per_trail option to the number of GPUs you require. The maximum number of GPUs per node on CoreWeave is 8, so the experiment will become multi-node once it reaches this threshold.