Custom Images for Determined AI

Build your own images for running machine learning models on Determined AI

Prerequisites

This guide assumes that the following are completed in advance.

Standard images

Determined AI provides a few useful standard default base images. We strongly recommend using one of these official Determined images as a base image, using the FROM instruction in your image's Dockerfile. For example:

# Determined Image
FROM determinedai/environments:cuda-11.3-pytorch-1.10-tf-2.8-gpu-0.19.10

Determined AI default base images

EnvironmentImageFramework

CPUs

determinedai/environments:py-3.8-pytorch-1.10-tf-2.8-cpu-0.19.4

PyTorch 1.10

Nvidia GPUs

determinedai/environments:cuda-11.3-pytorch-1.10-tf-2.8-gpu-0.19.4

Cuda 11.3

AMD GPUs

determinedai/environments:rocm-5.0-pytorch-1.10-tf-2.7-rocm-0.19.4

TensorFlow 2.8

Warning

Determined AI warns AGAINST installing TensorFlow, PyTorch, Horovod, or Apex packages, which conflict with Determined-installed packages.

This can cause issues for people looking to build custom models that pin different versions of PyTorch, TensorFlow, Horovod, and so forth. CoreWeave provides a repository and a guide based on our experience building custom images on the Determined AI platform.

At this time, the Determined AI team is working on building images for CUDA==11.8 with the latest PyTorch that supports it using official NVIDIA base images.

The guidelines and repository below provide insight about how to go about this process. The build process will vary based on your requirements and trial and error may be required to get your custom image to work on the Determined AI platform.

Python dependencies

The Determined AI Python package pins the package version required to run their setup harness and to execute their launcher. All dependencies are listed in Determined's provided setup.py file.

Important

One of the dependencies Determined AI installs is protobuf. This package may not be compatible with some custom images, which can cause issues during runtime. This can be mitigated by pinning the package version to protobuf==3.19.4.

DeepSpeed

Determined AI uses a fork of the standard DeepSpeed library to handle node failures, node communication, and to host file management automatically. If you are using a Machine Learning model that requires DeepSpeed, use Determined's fork of the library to ensure proper functionality on the Determined platform.

Examples

Note

The example Dockerfiles provided here are compatible with CUDA==11.7 or CUDA==11.8.

PyTorch 1.13 with CUDA 11.7 Dockerfile

FROM ghcr.io/coreweave/nccl-tests:11.7.1-devel-ubuntu20.04-nccl2.14.3-1-45d6ec9

ENV DET_PYTHON_EXECUTABLE="/usr/bin/python3.8"
ENV DET_SKIP_PIP_INSTALL="SKIP"

# Run updates and install packages for build
RUN echo "Dpkg::Options { "--force-confdef"; "--force-confnew"; };" > /etc/apt/apt.conf.d/local
RUN apt-get -qq update && \
    apt-get -qq install -y --no-install-recommends software-properties-common && \
    add-apt-repository ppa:deadsnakes/ppa -y && \
    add-apt-repository universe && \
    apt-get -qq update && \
    DEBIAN_FRONTEND=noninteractive apt-get install -y curl tzdata build-essential daemontools && \
    apt-get install -y --no-install-recommends \
       python3.8 \
       python3.8-distutils \
       python3.8-dev \
       python3.8-venv \
       git && \
    apt-get clean

# python3.8 -m ensurepip --default-pip && \
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python3.8 get-pip.py
RUN python3.8 -m pip install --no-cache-dir --upgrade pip

RUN python3.8 -m pip install torch torchvision torchaudio
RUN python3.8 -m pip install --no-cache-dir install packaging

#### Python packages
RUN python3.8 -m pip install --no-cache-dir determined==0.19.9
RUN python3.8 -m pip install --no-cache-dir pybind11
RUN python3.8 -m pip install --no-cache-dir protobuf==3.19.4
RUN update-alternatives --install /usr/bin/python3 python /usr/bin/python3.8 2
RUN echo 2 | update-alternatives --config python

PyTorch 1.13 with CUDA 11.8 Dockerfile

ARG CUDA_VERSION="11.8.0"

## Build pytorch on a builder image.
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 as builder
ENV DEBIAN_FRONTEND=noninteractive
ENV CUDA_PACKAGE_VERSION="11-8"
ENV TORCH_VERSION="1.13.1"
ENV TORCH_VISION_VERSION="0.14.1"
ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0+PTX"
RUN apt-get update && apt-get install -y \
      libncurses5 python3 python3-pip git apt-utils ssh ca-certificates \
      python3-distutils python3-numpy build-essential cmake && \
    update-alternatives --install /usr/bin/python python /usr/bin/python3 1 && \
    update-alternatives --install /usr/bin/pip pip /usr/bin/pip3 1 && \
    pip3 install --no-cache-dir --upgrade pip && \
    apt-get clean

RUN mkdir /build
WORKDIR /build

## Build torch
RUN git clone --recursive https://github.com/pytorch/pytorch -b v${TORCH_VERSION} && \
    cd pytorch && \
    git submodule sync && \
    git submodule update --init --recursive --jobs 0
RUN cd pytorch && pip3 install -r requirements.txt
RUN cd pytorch && \
    mkdir build && \
    ln -s /usr/bin/cc build/cc && \
    ln -s /usr/bin/c++ build/c++ && \
    USE_OPENCV=1 \
    BUILD_TORCH=ON \
    CMAKE_PREFIX_PATH="/usr/bin/" \
    LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:$LD_LIBRARY_PATH \
    CUDA_BIN_PATH=/usr/local/cuda/bin \
    CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda/ \
    CUDNN_LIB_DIR=/usr/local/cuda/lib64 \
    CUDA_HOST_COMPILER=cc \
    USE_CUDA=1 \
    USE_NNPACK=1 \
    CC=cc \
    CXX=c++ \
    USE_EIGEN_FOR_BLAS=ON \
    USE_MKL=OFF \
    PYTORCH_BUILD_VERSION="${TORCH_VERSION}" \
    PYTORCH_BUILD_NUMBER=0 \
    TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST}" \
    TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
    python3 setup.py bdist_wheel
RUN cd pytorch && pip3 install --no-cache-dir dist/torch*.whl

## Build torchvision
RUN git clone --recursive https://github.com/pytorch/vision -b v${TORCH_VISION_VERSION} && \
    cd pytorch && \
    git submodule sync && \
    git submodule update --init --recursive --jobs 0
RUN cd vision && pip3 install --no-cache-dir matplotlib \
                                             numpy \
                                             typing_extensions \
                                             requests \
                                             pillow
RUN cd vision && \
    mkdir build && \
    ln -s /usr/bin/cc build/cc && \
    ln -s /usr/bin/c++ build/c++ && \
    USE_OPENCV=1 \
    PATH=/usr/local/cuda/bin:$PATH \
    BUILD_TORCH=ON \
    CMAKE_PREFIX_PATH="/usr/bin/" \
    LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:$LD_LIBRARY_PATH \
    CUDA_BIN_PATH=/usr/local/cuda/bin \
    CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda/ \
    CUDNN_LIB_DIR=/usr/local/cuda/lib64 \
    CUDA_HOST_COMPILER=cc \
    USE_CUDA=1 \
    USE_NNPACK=1 \
    CC=cc \
    CXX=c++ \
    USE_EIGEN_FOR_BLAS=ON \
    USE_MKL=OFF \
    BUILD_VERISON="${TORCH_VISION_VERSION}" \
    TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST}" \
    TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
    python3 setup.py bdist_wheel
RUN cd vision && pip3 install --no-cache-dir dist/torchvision*.whl

## Build final torch-base image now
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04
ENV CUDA_PACKAGE_VERSION="11-8"
ENV TORCH_VERSION="1.13.1"
ENV TORCH_VISION_VERSION="0.14.1"
ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0+PTX"
ENV DEBIAN_FRONTEND=noninteractive

# Determined variables
ENV DET_PYTHON_EXECUTABLE="/usr/bin/python3.8"
ENV DET_SKIP_PIP_INSTALL="SKIP"


# Install core packages
RUN apt-get update && apt-get install -y \
      libncurses5 python3 python3-pip python3-distutils python3-numpy \
      curl git apt-utils ssh ca-certificates tmux nano vim sudo bash rsync \
      htop wget unzip tini && \
    update-alternatives --install /usr/bin/python python /usr/bin/python3 1 && \
    update-alternatives --install /usr/bin/pip pip /usr/bin/pip3 1 && \
    pip3 install --no-cache-dir --upgrade pip && \
    apt-get clean
RUN apt-get install -y \
         libcurand-${CUDA_PACKAGE_VERSION} \
         libcufft-${CUDA_PACKAGE_VERSION} \
         libcublas-${CUDA_PACKAGE_VERSION} \
         cuda-nvrtc-${CUDA_PACKAGE_VERSION} \
         libcusparse-${CUDA_PACKAGE_VERSION} \
         libcusolver-${CUDA_PACKAGE_VERSION} \
         cuda-cupti-${CUDA_PACKAGE_VERSION} \
         libnvtoolsext1 \
         libnccl2 && \
    apt-get clean

WORKDIR /usr/src/app

# Copy python dist-packages for pytorch in.
COPY --from=builder /usr/local/lib/python3.8/dist-packages \
                    /usr/local/lib/python3.8/dist-packages

# Python packages
RUN python3.8 -m pip install --no-cache-dir determined==0.19.9
RUN python3.8 -m pip install --no-cache-dir pybind11
RUN python3.8 -m pip install --no-cache-dir protobuf==3.19.4
RUN update-alternatives --install /usr/bin/python3 python /usr/bin/python3.8 2
RUN echo 2 | update-alternatives --config python

Additional resources

Last updated